Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2022

Thermospheric density enhancement and limb O 130.4 nm radiance increase during geomagnetic storms

We explore a connection between thermospheric density enhancement and increase in thermospheric O 130.4 nm radiance. We observe TIMED/GUVI enhancements in the limb 130.4 nm radiances at ∼400 and ∼520 km on the dayside during four intense geomagnetic storms in 2003 and 2004. The enhancements were well correlated with Dst and CHAMP total neutral density at 400 km which represents O density as O is the dominant species at those altitudes. At the 400 and 520 km altitudes, O 130.4 nm emissions are mostly created by two comparable sources: solar resonance scatter and photoelectron impact excitation. The coincident disk 130.4 nm radiances, mostly due to emissions below 200 km (peaked around 130–140 km), were not clearly correlated with the limb radiances. Because the limb 130.4 nm radiances depend on O density, solar EUV and 130.4 nm fluxes, variations in the limb 130.4 nm radiance respond mostly to changes in O density when the solar EUV and 130.4 nm fluxes are stable. This explains the good correlation (correlation coefficients up to 0.98) between the limb 130.4 nm radiance and CHAMP neutral density. Once a quantitative relationship is established between GUVI limb 130.4 nm radiance and neutral density under both quiet and disturbed conditions and at different altitude levels through empirical or radiative transfer modeling, the limb 130.4 nm radiances can be used to retrieve O density profiles in the upper thermosphere.

Zhang, Yongliang; Paxton, Larry; Schaefer, R.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: mar

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105830

FUV emission; Geomagentic storms; neutral density; thermosphere

Quantification of the role of gravity wave induced TIDs in modulating ESF day to day variability during geomagnetically disturbed periods

The control of magnetic disturbance induced seed perturbations on the daily variation in night-time ionization irregularity occurrence is studied using ionosonde data and TIMED/GUVI neutral density data at the magnetic equatorial region, Trivandrum. The study reveals that there is a requisite threshold seed amplitude for ESF to occur at a particular altitude and this requisite seed increases as the altitude decreases. This dependence of requisite seed perturbation on altitude for multiple years, which incorporates the electrodynamical effects also, is used as the basis for developing an empirical model to hind-cast ESF. Using the model, the threshold seed perturbation for any day of vernal equinox (ve) season of any year can be delineated if the solar flux index (F10.7) is known. The empirical model is also validated using the data for high and low solar activity periods. The model is able to hind-cast ESF with 92\% success for low solar activity while the success rate for high solar activity is 50\%. Further, the dependence of the threshold curves on neutral density is brought out, thereby confirming the role of ion-neutral coupling processes in modulating the same for magnetically disturbed periods. The geomagnetically disturbed period requisite seed amplitudes are higher than those for quiet periods at a given altitude. This study underlines the importance of disturbance induced seed perturbations and neutral density in controlling ESF occurrence.

Sruthi, T.; Manju, G.;

Published by: Advances in Space Research      Published on: mar

YEAR: 2022     DOI: 10.1016/j.asr.2021.11.038

Equatorial ionosphere; Equatorial Spread F; Geomagnetically disturbed period; neutral density

2015

Seasonal variability in global eddy diffusion and the effect on neutral density

We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite drag observations and are qualitatively consistent with other measurement methods such as sodium lidar observations and eddy diffusivity models. Eddy diffusion coefficient values estimated between January 2004 and January 2008 were then used to generate new TIME-GCM results. Based on these results, the root-mean-square sum for the TIME-GCM model is reduced by an average of 5\% when compared to density data from a variety of satellites, indicating that the fidelity of global density modeling can be improved by using data from a single satellite like CHAMP. This approach also demonstrates that eddy diffusion could be estimated in near real-time from satellite observations and used to drive a global circulation model like TIME-GCM. Although the use of global values improves modeled neutral densities, there are limitations to this method, which are discussed, including that the latitude dependence of the seasonal neutral-density signal is not completely captured by a global variation of eddy diffusion coefficients. This demonstrates the need for a latitude-dependent specification of eddy diffusion which is also consistent with diffusion observations made by other techniques.

Pilinski, M.; Crowley, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015JA021084

annual; eddy diffusion; neutral density; satellite drag; seasonal variability; semiannual



  1